Anomalous Calcium Dependent Binding of Calmodulin to KCNQ2 Potassium Channels
نویسندگان
چکیده
منابع مشابه
Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels.
Calmodulin (CaM) was identified as a KCNQ2 and KCNQ3 potassium channel-binding protein, using a yeast two-hybrid screen. CaM is tethered constitutively to the channel, in the absence or presence of Ca2+, in transfected cells and also coimmunoprecipitates with KCNQ2/3 from mouse brain. The structural elements critical for CaM binding to KCNQ2 lie in two conserved motifs in the proximal half of t...
متن کاملCalcium-dependent binding of Myc to calmodulin
The bHLH-LZ (basic region/helix-loop-helix/leucine zipper) oncoprotein Myc and the bHLH-LZ protein Max form a binary transcription factor complex controlling fundamental cellular processes. Deregulated Myc expression leads to neoplastic transformation and is a hallmark of most human cancers. The dynamics of Myc transcription factor activity are post-translationally coordinated by defined protei...
متن کاملPolarized Axonal Surface Expression of Neuronal KCNQ Potassium Channels Is Regulated by Calmodulin Interaction with KCNQ2 Subunit
KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is i...
متن کاملCalmodulin interactions with IQ peptides from voltage-dependent calcium channels.
Calmodulin (CaM) functions as a Ca(2+) sensor for inactivation and, in some cases, facilitation of a variety of voltage-dependent Ca(2+) channels. A crucial determinant for CaM binding to these channels is the IQ motif in the COOH-terminal tail of the channel-forming subunit. The binding of CaM to IQ peptides from Lc-, P/Q-, and R-type, but not N-type, voltage-dependent Ca(2+) channels increase...
متن کاملInteractive effects of the GABABergic modulation of calcium channels and calcium-dependent potassium channels in lamprey.
The GABAB-mediated modulation of spinal neurons in the lamprey is investigated in this study. Activation of GABAB receptors reduces calcium currents through both low- (LVA) and high-voltage activated (HVA) calcium channels, which subsequently results in the reduction of the calcium-dependent potassium (KCa) current. This in turn will reduce the peak amplitude of the afterhyperpolarization (AHP)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2010
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.12.3711